

GridDB と Cassandra のパフォーマンスとスケーラビリティ
Microsoft Azure 環境における YCSB パフォーマンス⽐較

2017 年 8 ⽉ 23 ⽇
Revision 1.2.0J

 Page 2

⽬次
要約	..	3	

イントロダクション	..	3	

環境	..	4	
Azure の構成	...	4	
ソフトウェアのバージョン	..	4	
ソフトウェアの構成	...	4	

GridDB	...	4	
Cassandra	...	5	
共通事項	..	5	

テスト⽅法	...	6	
テスト設計	..	6	
テストの実⾏⽅法	..	6	
結果の収集と集計	..	7	

ベンチマークの結果	..	8	
Load	...	8	
Workload A	..	11	
Workload B	..	13	
Workload C	..	15	
Workload D	..	17	
Workload F	...	19	
⻑期的な Workload A	...	21	
結果⼀覧	..	23	

⼩さなデータセットでのスループット (ノードあたり 400 万レコード)	..	23	
⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 1 ノード	24	
⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 8 ノード	24	
⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 16 ノード	25	
⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 32 ノード	25	
⼤きなデータセットでのスループット (ノードあたり 1,200 万レコード)	26	
⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 1 ノード	27	
⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 8 ノード	27	
⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 16 ノード	28	
⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 32 ノード	28	

結論	..	29	

付録	..	30	
設定ファイル例	...	30	

gs_node.json	...	30	
gs_cluster.json	...	31	
cassandra.yaml	..	31	
Cassandra Schema	..	33	

 Page 3

要約
 フィックスターズは、東芝がオープンソースとして公開した NoSQL データベース「GridDB」
の実⾏環境を Microsoft Azure 上に構築し、YCSB (Yahoo! Cloud Serving Benchmark) を使⽤
したベンチマークを実施しました。また、性能⽐較のため、主要な NoSQL データベースの 1 つ
である Apache Cassandra のベンチマークも併せて実施しました。ベンチマークは、⼤⼩ 2 つ
のサイズのデータベースと、1〜32 ノードのクラスタシステムで⾏いました。これにより、様々
なワークロードパラメータ間で異なる構成のデータベースの性能がどのように変化するかを測定
しました。
 このパフォーマンスベンチマークの結論として、GridDB がスループットとレイテンシの両⽅に
おいて Cassandra を上回るとともに、GridDB が真にスケーラブルであり、⻑期運⽤で⼀貫した
パフォーマンスを提供可能であることが分かりました。

イントロダクション
 NoSQL データベースは、リレーショナルデータベースの持ついくつかの問題を克服し、優れた
拡張性、信頼性、柔軟性が提供できるように設計されています。クラウドコンピューティングや
モバイルコンピューティング、Internet of Things などに代表されるように、より多くのデータ
を収集し、処理するような新しいテクノロジーが発展するに従って、NoSQL データベースは 最
初に考慮すべき選択肢となっています。
 GridDB は、東芝が開発した分散型 NoSQL データベースです。メモリを主、ストレージを従と
したハイブリッド型インメモリデータベースであり、コンテナレベルで ACID (原⼦性、⼀貫性、
独⽴性、永続性) を保証しており、豊富な機能を備えています。また、キーコンテナ型または時系
列データベースとして使⽤することもできます。
 Cassandra はオープンソースの分散型 NoSQL データベースです。Cassandra は、主要な
NoSQL データベースの中で、⾼可⽤性と分散型設計を維持しながらも、⾼いパフォーマンスを持
つことで知られています。
 YCSB (Yahoo! Cloud Serving Benchmark) は、Java で書かれた NoSQL または Key-Value
ストアデータベースに対するベンチマークツールです。

 Page 4

環境

Azure の構成
 まず、アメリカ⻄海岸地域で 65 個の Standard D2 インスタンスを持つリソースグループを 3
つ作成しました。Standard D2 インスタンスは、2.40GHz、7GB のメモリ、1Gbps のネットワ
ーキング、100GB のローカル SSD で動作する 2 つの Intel Xeon CPU E5-2673 コアで構成さ
れています。GridDB と Cassandra のデータファイルをローカル SSD に保存し、OS ディスク
は永続的なページブロブに保存しました。
 各インスタンスは、OpenLogic Centos 6.5 Linux イメージをベースとしています。最初のイ
ンスタンスにはパブリック IP アドレスが含まれ、ヘッドノードとして動作します。最⼤ 32 個の
インスタンスが NoSQL データベースサーバとして使⽤され、同数のインスタンスによって YCSB
クライアントを実⾏しました。
 ヘッドノードは、サーバの起動、YCSB クライアントの実⾏、リソース使⽤率統計の収集、お
よび結果の集計を⾏いました。

ソフトウェアのバージョン
 東芝が提供する RPM パッケージを使⽤して、各 Azure ノードに GridDB バージョン 3.0 CE
をインストールしました。
 Cassandra は、Datastax のコミュニティ YUM リポジトリからバージョン 3.4 をインストー
ルしました。
 YCSB は 2016 年 7 ⽉ 5 ⽇時点の GitHub リポジトリからのコピーを使いました。
Cassandra2 データベースドライバは特に変更していません。YCSB GridDB ドライバは 2016
年 8 ⽉に東芝より提供されたものを使⽤していますが、マルチキャストではなく固定リスト接続
⽅式を使⽤するように変更しています。

ソフトウェアの構成

GridDB
 GridDB では、ほとんどの場合で、デフォルトまたは推奨とされている設定値を使⽤しました。
今回の検証結果が、これら推奨値がセットアップの際の理想的な値であるという証拠となってい
ます。処理並列度 (concurrency) はコア数に合わせて 2 に設定し、チェックポイント⽤メモリバ
ッファサイズ (checkpointMemoryLimit) は 512MB、メモリバッファサイズ
(storeMemoryLimit) は 6,144MB に設定しました。この構成により、4GB のレコードをメモリ
に保持するための⼗分なスペースが得られ、他のシステムアクションのために約 512MB を確保
しました。

 Page 5

 GridDB サーバ間の接続⽅法は、 より⼀般的なマルチキャスト⽅式ではなく、 固定リスト⽅式
を使⽤しました。これは、Azure や他の多くのクラウドプロバイダがインスタンス間のマルチキ
ャストをサポートしていないためです。
 デフォルト値からの唯⼀の変更点は、storeBlockSize を 64KB から 32KB に設定した点です。

Cassandra
 Cassandra のベンチマークでは、ライトタイムアウトが発⽣しました。これは、他の多くのベ
ンチマークでも報告されているようです。この問題を解决するために、YCSB ワークロードファ
イルで core_workload_insertion_retry_limit を 0 から 10 に増やし、
write_request_timeout_in_ms、counter_write_request_timeout_in_ms、および
range_request_timeout_in_ms をすべて 10 秒に増やし、read_request_timout_in_ms を 5
秒に増やしました。
 クラスタの起動時間を短縮するために、n-1 個のシード・ノードを使⽤しました。n はノード
の数です。 シード・ノードを 1 と 4 にした場合も検証しましたが、1 つのラック/データセンタ
ー環境ではパフォーマンスに影響は⾒られませんでした。
 同時接続のリーダー、ライターの数は、検証によって確認されたようにすべて 32 に設定しま
した。

共通事項
 両システムで、limits.conf を使⽤して開けるファイルの最⼤数を 64,000 に増やしました。

 Page 6

テスト⽅法

テスト設計
 テストの⽬的は、他の NoSQL ベンチマークでよく使われるものと同様の評価軸を使いながら、
各データベースがさまざまな条件下でどのように実⾏されたかを確認することでした。
 事前に⼩規模なテストを⾏い、 32 と 192 の間のスレッド数において同様の結果が得られるこ
とを確認していますが、特に 128 スレッドの時に性能が最も安定していました。したがって、タ
イムアウト例外を防ぐために 32 スレッドを使⽤する Cassandra ロードを除いて、すべてのテス
トでスレッド数は 128 に設定しました。その後の調査により、Cassandra においては、スレッ
ド数は可変なものの、少ないスレッド数のときに最⾼のパフォーマンスとなるのが⼀般的な傾向
であると判明しました。
 データセットとしては、ノードあたり 400 万レコードの⼩さなデータセットと、ノードあたり
1,200 万レコードの⼤きなデータセットの 2 種類を使⽤しました。各レコードは 10 個の 100
バイト⽂字列(1 レコードあたり 1K バイト) で構成されます。したがって、ノードごとのデータ
ベースサイズはそれぞれ 4GB または 12GB になります。⼩さなデータセットはメモリ内に完全
に収まることができますが、⼤きなデータセットの 50％はローカルのメモリからストレージにフ
ラッシュする必要があります。
 トランザクション・ワークロードは、クライアントごとに 1,000 万回の操作を実⾏し、データ
セット全体にアクセスするものです。Cassandra の場合、この設定により、JVM のウォーミング
アップに⼗分な時間を確保することができ、⾏がキャッシュ内外に確実に流れるようにしました。

テストの実⾏⽅法
 リソースが共有されたパブリッククラウド上でベンチマークを実⾏する場合、実⾏時毎のパフ
ォーマンスにばらつきが出ます。このベンチマークの評価対象は Azure ではなく、GridDB と
Cassandra です。Azure によるパフォーマンスの変動を最⼩限に抑えるため、各テストは異なる
リソースグループで 3 回実⾏し、それらのうちの最⾼値を結果として採⽤しています。
 すべてのインスタンスが「割り当て解除」されている状態から開始して、ヘッドノードが最初
に必要な数のインスタンスを起動します。実⾏後、構成ファイルを配置し、ローカル SSD をマウ
ントし、既存のデータベースデータファイルを削除し、最後に initscript を使⽤して GridDB また
は Cassandra を起動します。
 サーバの起動が完了すると、GridDB の gs_stat または Cassandra の nodetool を介してサー
バ統計情報を取得し、詳細な分析のために保存しました。
 YCSB のロードは、適切な insertstart、insertcount、recordcount パラメータを使⽤して、す
べてのクライアント・ノード上で並⾏して実⾏します。ロードが完了した後、ワークロードは、
YCSB が推奨する次の順序で実⾏されます
（https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads を参照）。

• Workload A -- 頻繁に更新
• Workload B -- 主に読み取り

 Page 7

• Workload C -- 読み取り専⽤
• Workload F -- 読み取り、変更、書き込み
• Workload D -- 最新の読み取り

 各ワークロードが終了すると、サーバの統計情報を再度取得します。

結果の収集と集計
 すべての YCSB 出⼒を後処理して結果を集計するために、awk と grep を使⽤した単純な
bash スクリプトを使⽤して、CSV 形式の⾏ごとに 1 回のテスト実⾏を出⼒し、さらにスプレッ
ドシートで処理しました。

 Page 8

ベンチマークの結果

Load
 他の Cassandra ベンチマークレポートにおいて Cassandra にデータを読み込む際に問題が発
⽣すると報告されていますが、フィックスターズのベンチマークでも同様の問題が発⽣しました。
同時書き込み数を推奨設定から増やし、タイムアウトを 10 倍に延⻑し、スレッド数を 32 に減
らすと、すべての TimeoutExceptions が修正されました。スループットのグラフにおいては数
値の⾼い⽅が、レイテンシのグラフにおいては数値の低い⽅が良い結果を意味します。

 Page 9

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

350,000	

400,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Load	Throughput	(4M	records/node)

GridDB

Cassandra

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Load	Throughput	(12M	records/node)

GridDB

Cassandra

 Page 10

0

5

10

15

20

25

30

35

40

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Load	Latency	(4M	records/node)

Insert

0

5

10

15

20

25

30

35

40

45

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Load	Latency	(12M	records/node)

Insert

 Page 11

Workload A
 Workload A は更新(update)が集中的に⾏われるワークロードです。スループットのグラフで
は数値の⾼い⽅が、レイテンシのグラフにおいては数値の低い⽅が良い結果を意味します。

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	A	Throughput (4M	records/node)

GridDB

Cassandra

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	A	Throughput (12M	records/node)

GridDB

Cassandra

 Page 12

0

20

40

60

80

100

120

140

160

180

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Workload	A	Latency	(4M	records/node)

Read Update

0

50

100

150

200

250

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Workload	A	Latency	(12M	records/node)

Read Update

 Page 13

Workload B
 Workload B では、95％の読み取り操作と 5％の書き込み操作を⾏います。スループットのグ
ラフでは数値の⾼い⽅が、レイテンシのグラフにおいては数値の低い⽅が良い結果を意味します。

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	B Throughput (4M	records/node)

GridDB

Cassandra

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

200,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	B Throughput (12M	records/node)

GridDB

Cassandra

 Page 14

0

20

40

60

80

100

120

140

160

180

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Workload	B	Latency	(4M	records/node)

Read Update

0

20

40

60

80

100

120

140

160

180

200

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Workload	B	Latency	(12M	records/node)

Read Update

 Page 15

Workload C
 Workload C は読み取り操作のみです。スループットのグラフでは数値の⾼い⽅が、レイテン
シのグラフにおいては数値の低い⽅が良い結果を意味します。

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

700,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	C Throughput (4M	records/node)

GridDB

Cassandra

0	

50,000	

100,000	

150,000	

200,000	

250,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	C Throughput (12M	records/node)

GridDB

Cassandra

 Page 16

0

20

40

60

80

100

120

140

160

180

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Workload	C	Latency (4M	records/node)

Read

0

50

100

150

200

250

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Workload	C	Latency (12M	records/node)

Read

 Page 17

Workload D
 Workload D では新しいレコードを挿⼊し、それらの新しいレコードを読み取ります。スルー
プットのグラフでは数値の⾼い⽅が、レイテンシのグラフにおいては数値の低い⽅が良い結果を
意味します。

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

700,000	

800,000	

900,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	D Throughput (4M	records/node)

GridDB

Cassandra

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

350,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	D Throughput (12M	records/node)

GridDB

Cassandra

 Page 18

0

10

20

30

40

50

60

70

80

90

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Workload	D	Latency (4M	records/node)

Insert Read

0

10

20

30

40

50

60

70

80

90

100

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Workload	D	Latency (12M	records/node)

Insert Read

 Page 19

Workload F
 Workload F ではレコードを読み取り、変更してから書き戻します。スループットのグラフで
は数値の⾼い⽅が、レイテンシのグラフにおいては数値の低い⽅が良い結果を意味します。

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
t/
se
c)

Number	of	Nodes

Workload	F Throughput (4M	records/node)

GridDB

Cassandra

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

0	 10	 20	 30	

Th
ro
ug
hp
ut
	(
op
s/
se
c)

Number	of	Nodes

Workload	F Throughput (12M	records/node)

GridDB

Cassandra

 Page 20

0

50

100

150

200

250

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)
Workload	F	Latency (4M	records/node)

Read Read-Modify-Write Update

0

50

100

150

200

250

300

GridDB Cassandra GridDB Cassandra GridDB Cassandra GridDB Cassandra

1	Node 8	Nodes 16	Nodes 32	Nodes

La
te
nc
y	
(m

s)

Workload	F	Latency (12M	records/node)

Read Read-Modify-Write Update

 Page 21

⻑期的な Workload A
 Workload A などの更新集中型ワークロードでは、Cassandra はログベースのアーキテクチャ
で⾏をすばやく削除済みとしてマークし、ログの末尾に新しい値を追加できるため、Cassandra
の結果は⾮常に良好でした。しかし我々は、Cassandra は時間が経つにつれてパフォーマンスが
落ちることに気づきました。 そこで 8 ノードのクラスタを構成し、ノードごとに 400 万と
1,200 万のレコードをロードし、operationcount を 232-1 に設定し、テストを 24 時間実⾏しま
した。
 ⼤きなデータセットでの結果の⽅がより傾向が明確に出ていますが、どちらのテストにおいて
も、Cassandra のスループットは、初期と⽐較して 24 時間後のスループットは 50％ 未満とな
りました。 ⼀⽅、GridDB のパフォーマンスは、データサイズの⼤⼩にかかわらず、⾮常に安定
していました。

 Page 22

0

25000

50000

75000

100000

0 6 12 18 24

Th
ro
ug

hp
ut
	(o

ps
/s
ec
)

Time	(hour)

Long	Term	Workload	A	Throughput	(4M	records/node)

GridDB	

Cassandra

0

5000

10000

15000

20000

0 6 12 18 24

Th
ro
ug

hp
ut
	(o

ps
/s
ec
s)

Time	(hour)

Long	Term	Workload	A	Throughput	(12M	records/node)

GridDB	

Cassandra

 Page 23

結果⼀覧
 スループットの値は「1 秒あたりの操作数 (ops/sec)」単位、レイテンシの値は「ミリ秒
(msec)」単位です。

⼩さなデータセットでのスループット (ノードあたり 400 万レコード)

 1	Node 8	Nodes 16	Nodes 32	Nodes
Load GridDB 20,425	 123,859	 184,836	 369,046	
 Cassandra 4,246	 15,223	 19,753	 30,304	
Workload	A	 GridDB 21,286	 117,284	 157,347	 270,690	
 Cassandra 4,330	 17,656	 21,781	 36,496	
Workload	B GridDB 31,449	 179,842	 296,967	 529,091	
 Cassandra 3,171	 11,657	 15,865	 25,832	
Workload	C GridDB 33,796	 227,802	 318,485	 624,954	
 Cassandra 2,707	 11,174	 15,886	 24,623	
Workload	D GridDB 31,010	 261,624	 395,112	 801,982	
 Cassandra 5,672	 23,654	 34,246	 51,389	
Workload	F GridDB 17,300	 90,310	 157,144	 262,940	
 Cassandra 1,837	 8,351	 10,971	 17,942	

 Page 24

⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 1 ノード

 Insert Read Read-Mod-Write Update
Load GridDB 6.0
 Cassandra 7.0
Workload	A GridDB 3.9 7.7
 Cassandra 30.9 28.1
Workload	B GridDB 3.8 7.6
 Cassandra 40.2 40.0
Workload	C GridDB 3.6
 Cassandra 47.2
Workload	D GridDB 5.1 3.9
 Cassandra 24.1 22.4
Workload	F GridDB 3.7 10.7 6.9
 Cassandra 47.5 91.6 44.1

⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 8 ノード

 Insert Read Read-Mod-Write Update
Load GridDB 8.0
 Cassandra 13.3
Workload	A GridDB 6.2 11.0
 Cassandra 98.6 16.3
Workload	B GridDB 5.3 10.3
 Cassandra 91.3 10.6
Workload	C GridDB 4.4
 Cassandra 91.0
Workload	D GridDB 4.5 3.8
 Cassandra 14.2 44.5
Workload	F GridDB 6.7 15.7 9.0
 Cassandra 47.5 91.6 44.1

 Page 25

⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 16 ノード

 Insert Read Read-Mod-Write Update

Load GridDB 10.7
 Cassandra 25.7
Workload	A GridDB 10.2 16.5
 Cassandra 154.7 30.9
Workload	B GridDB 6.4 12.3
 Cassandra 134.0 19.3
Workload	C GridDB 6.3
 Cassandra 128.0
Workload	D GridDB 5.7 5.0
 Cassandra 57.9 59.3
Workload	F GridDB 7.5 18.2 10.6
 Cassandra 176.0 194.5 18.6

⼩さなデータセットでのレイテンシ (ノードあたり 400 万レコード) -- 32 ノード

 Insert Read Read-Mod-Write Update
Load GridDB 13.4
 Cassandra 33.6
Workload	A GridDB 11.3 18.0
 Cassandra 168.7 52.2
Workload	B GridDB 6.8 13.2
 Cassandra 163.8 23.7
Workload	C GridDB 6.2
 Cassandra 164.7
Workload	D GridDB 5.5 4.9
 Cassandra 77.2 79.1
Workload	F GridDB 8.7 21.3 12.6
 Cassandra 213.8 237.8 24.0

 Page 26

⼤きなデータセットでのスループット (ノードあたり 1,200 万レコード)

 1	Node 8	Nodes 16	Nodes 32	Nodes
Load	 GridDB 13,082	 80,074	 141,847	 277,243	
 Cassandra 4,325	 12,405	 18,063	 25,412	
Workload	A	 GridDB 1,945	 14,847	 33,078	 74,053	
 Cassandra 1,699	 12,485	 18,892	 30,973	
Workload	B	 GridDB 4,233	 35,419	 78,117	 173,166	
 Cassandra 951	 7,674	 12,431	 22,684	
Workload	C	 GridDB 5,149	 50,211	 111,996	 220,950	
 Cassandra 884	 7,353	 12,082	 21,129	
Workload	D	 GridDB 17,575	 77,486	 155,445	 316,608	
 Cassandra 2,881	 15,003	 24,349	 44,677	
Workload	F	 GridDB 2,242	 16,209	 36,188	 83,399	
 Cassandra 788	 6,236	 8,960	 16,212	

 Page 27

⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 1 ノード

 Insert Read Read-Mod-Write Update

Load GridDB 9.7
 Cassandra 7.0
Workload	A GridDB 44.2 87.0
 Cassandra 130.8 19.5
Workload	B GridDB 28.7 56.9
 Cassandra 140.2 23.8
Workload	C GridDB 24.8
 Cassandra 144.6
Workload	D GridDB 7.3 7.2
 Cassandra 27.0 45.3
Workload	F GridDB 29.1 84.7 55.6
 Cassandra 149.1 175.2 26.1

⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 8 ノード

 Insert Read Read-Mod-Write	 Update
Load GridDB 12.9	
 Cassandra 15.9
Workload	A GridDB 56.4 80.6
 Cassandra 148.4 13.1
Workload	B GridDB 27.7 48.4
 Cassandra 139.0 13.2
Workload	C GridDB 20.2
 Cassandra 138.6
Workload	D GridDB 14.2 13.0
 Cassandra 12.1 70.8
Workload	F GridDB 46.1 79.3 33.2
 Cassandra 47.5 91.6 44.1

 Page 28

⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 16 ノード

 Insert Read Read-Mod-Write Update

Load GridDB 14.2
 Cassandra 28.2
Workload	A GridDB 50.4 72.3
 Cassandra 194.0 20.2
Workload	B GridDB 25.1 43.4
 Cassandra 171.5 18.4
Workload	C GridDB 18.1
 Cassandra 168.6
Workload	D GridDB 13.9 13.0
 Cassandra 14.6 87.1
Workload	F GridDB 41.0 71.1 30.1
 Cassandra 217.7 236.6 18.9

⼤きなデータセットでのレイテンシ (ノードあたり 1,200 万レコード) -- 32 ノード

 Insert Read Read-Mod-Write Update

Load GridDB 14.5
 Cassandra 40.1
Workload	A GridDB 44.6 65.1
 Cassandra 224.8 35.7
Workload	B GridDB 22.4 40.6
 Cassandra 187.4 22.3
Workload	C GridDB 18.2
 Cassandra 192.4
Workload	D GridDB 13.4 12.3
 Cassandra 14.9 94.8
Workload	F GridDB 34.7 62.3 27.6
 Cassandra 238.3 262.6 24.3

 Page 29

結論
 GridDB のメモリを中⼼に考えられたハイブリッド型インメモリ・アーキテクチャは、メモリ内
に収まるデータセットと、メモリ内に収まらずストレージを必要とするデータセットに対するオ
ペレーションの両⽅で、Cassandra を上回ることが分かりました。さらに GridDB は 24 時間の
⻑時間動作においても、安定した性能を維持しました。
 GridDB のノード間通信は、少なくとも 32 ノードまで、Cassandra の分散型ピアツーピアシ
ステムよりも⼤幅に優れていると⾔えます。Cassandra がある特定の Azure インスタンスタイ
プで、ノード数の増加に対しパフォーマンスが 50％程度でしかスケールできないのに対し、
GridDB のパフォーマンスは追加されるノードの数にほぼ⽐例して増加しました。

 Page 30

付録

設定ファイル例

gs_node.json
{
 "dataStore":{
 "dbPath":"data",
 "storeMemoryLimit":"6144MB",
 "storeWarmStart":true,
 "concurrency":2,
 "logWriteMode":1,
 "persistencyMode":"NORMAL",
 "affinityGroupSize":4
 },
 "checkpoint":{
 "checkpointInterval":"1200s",
 "checkpointMemoryLimit":"512MB",
 "useParallelMode":false
 },
 "cluster":{
 "servicePort":10010
 },
 "sync":{
 "servicePort":10020
 },
 "system":{
 "servicePort":10040,
 "eventLogPath":"log"
 },
 "transaction":{
 "servicePort":10001,
 "connectionLimit":10000
 },
 "trace":{
 "default":"LEVEL_ERROR",
 "dataStore":"LEVEL_ERROR",
 "collection":"LEVEL_ERROR",
 "timeSeries":"LEVEL_ERROR",
 "chunkManager":"LEVEL_ERROR",
 "objectManager":"LEVEL_ERROR",
 "checkpointFile":"LEVEL_ERROR",
 "checkpointService":"LEVEL_INFO",
 "logManager":"LEVEL_WARNING",
 "clusterService":"LEVEL_ERROR",
 "syncService":"LEVEL_ERROR",
 "systemService":"LEVEL_INFO",
 "transactionManager":"LEVEL_ERROR",
 "transactionService":"LEVEL_ERROR",
 "transactionTimeout":"LEVEL_WARNING",
 "triggerService":"LEVEL_ERROR",
 "sessionTimeout":"LEVEL_WARNING",
 "replicationTimeout":"LEVEL_WARNING",
 "recoveryManager":"LEVEL_INFO",
 "eventEngine":"LEVEL_WARNING",

 Page 31

 "clusterOperation":"LEVEL_INFO",
 "ioMonitor":"LEVEL_WARNING"
 }
}

gs_cluster.json
{
 "dataStore":{
 "partitionNum":128,
 "storeBlockSize":"32KB"
 },
 "cluster":{
 "clusterName":"defaultCluster",
 "replicationNum":1,
 "heartbeatInterval":"5s",
 "loadbalanceCheckInterval":"180s",
 "notificationMember": [
 {
 "cluster": {"address":"10.0.0.13", "port":10010},
 "sync": {"address":"10.0.0.13", "port":10020},
 "system": {"address":"10.0.0.13", "port":10040},
 "transaction": {"address":"10.0.0.13", "port":10001},
 }
]
 },
 "sync":{
 "timeoutInterval":"30s"
 }
}

cassandra.yaml
cluster_name: 'Test Cluster'
num_tokens: 256
hinted_handoff_enabled: true
hinted_handoff_throttle_in_kb: 1024
max_hints_delivery_threads: 2
hints_directory: /var/lib/cassandra/hints
hints_flush_period_in_ms: 10000
max_hints_file_size_in_mb: 128
batchlog_replay_throttle_in_kb: 1024
authenticator: AllowAllAuthenticator
authorizer: AllowAllAuthorizer
role_manager: CassandraRoleManager
roles_validity_in_ms: 2000
permissions_validity_in_ms: 2000
credentials_validity_in_ms: 2000
partitioner: org.apache.cassandra.dht.Murmur3Partitioner
data_file_directories:
 - /var/lib/cassandra/data
commitlog_directory: /var/lib/cassandra/commitlog
disk_failure_policy: stop
commit_failure_policy: stop
key_cache_size_in_mb:
key_cache_save_period: 14400

 Page 32

row_cache_size_in_mb: 0
row_cache_save_period: 0
counter_cache_size_in_mb:
counter_cache_save_period: 7200
saved_caches_directory: /var/lib/cassandra/saved_caches
commitlog_sync: periodic
commitlog_sync_period_in_ms: 10000
commitlog_segment_size_in_mb: 32
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: ${SEEDS}
concurrent_reads: 32
concurrent_writes: 32
concurrent_counter_writes: 32
concurrent_materialized_view_writes: 32
memtable_allocation_type: heap_buffers
index_summary_capacity_in_mb:
index_summary_resize_interval_in_minutes: 60
trickle_fsync: false
trickle_fsync_interval_in_kb: 10240
storage_port: 7000
ssl_storage_port: 7001
start_native_transport: true
native_transport_port: 9042
start_rpc: false
rpc_port: 9160
rpc_keepalive: true
rpc_server_type: sync
thrift_framed_transport_size_in_mb: 15
incremental_backups: false
snapshot_before_compaction: false
auto_snapshot: true
tombstone_warn_threshold: 1000
tombstone_failure_threshold: 100000
column_index_size_in_kb: 64
batch_size_warn_threshold_in_kb: 5
batch_size_fail_threshold_in_kb: 50
compaction_throughput_mb_per_sec: 16
compaction_large_partition_warning_threshold_mb: 100
sstable_preemptive_open_interval_in_mb: 50
read_request_timeout_in_ms: 50000
range_request_timeout_in_ms: 100000
write_request_timeout_in_ms: 100000
counter_write_request_timeout_in_ms: 100000
cas_contention_timeout_in_ms: 10000
truncate_request_timeout_in_ms: 600000
request_timeout_in_ms: 900000
cross_node_timeout: false
endpoint_snitch: SimpleSnitch
dynamic_snitch_update_interval_in_ms: 100
dynamic_snitch_reset_interval_in_ms: 600000
dynamic_snitch_badness_threshold: 0.1
request_scheduler: org.apache.cassandra.scheduler.NoScheduler
server_encryption_options:
 internode_encryption: none
 keystore: conf/.keystore

 Page 33

 keystore_password: cassandra
 truststore: conf/.truststore
 truststore_password: cassandra
client_encryption_options:
 enabled: false
 optional: false
 keystore: conf/.keystore
 keystore_password: cassandra
internode_compression: all
inter_dc_tcp_nodelay: false
tracetype_query_ttl: 86400
tracetype_repair_ttl: 604800
gc_warn_threshold_in_ms: 1000
enable_user_defined_functions: false
enable_scripted_user_defined_functions: false
windows_timer_interval: 1
transparent_data_encryption_options:
 enabled: false
 chunk_length_kb: 64
 cipher: AES/CBC/PKCS5Padding
 key_alias: testing:1
 key_provider:
 - class_name: org.apache.cassandra.security.JKSKeyProvider
 parameters:
 - keystore: conf/.keystore
 keystore_password: cassandra
 store_type: JCEKS
 key_password: cassandra

Cassandra Schema
create keyspace ycsb WITH REPLICATION = {'class' : 'SimpleStrategy',
'replication_factor': 1 };"

create table ycsb.usertable (y_id varchar primary key, field0 varchar, field1
varchar, field2 varchar, field3 varchar, field4 varchar, field5 varchar, field6
varchar, field7 varchar, field8 varchar, field9 varchar, field10 varchar);"

